Your browser doesn't support javascript.
loading
Versatile Synthesis of Mesoporous Crystalline TiO2 Materials by Monomicelle Assembly.
Lan, Kun; Wei, Qiulong; Zhao, Dongyuan.
Afiliação
  • Lan K; Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China.
  • Wei Q; Department of Materials Science and Engineering, Fujian Key Laboratory of Materials Genome, Xiamen Key Laboratory of High Performance Metals and Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Zhao D; Laboratory of Advanced Materials, Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China.
Angew Chem Int Ed Engl ; 61(25): e202200777, 2022 Jun 20.
Article em En | MEDLINE | ID: mdl-35194915
Mesoscale TiO2 structures have realized many technological applications-ranging from catalysis and biomedicine to energy storage and conversion-because of their large mesoporosities offering desirable accessibility and mass transport. Tailoring mesoporous TiO2 structures with novel mesoscopic and microscopic configurations is envisaged to offer ample opportunities for further applications. In this Review, we explain how to synthesize novel mesoporous TiO2 materials and present recent examples. An emphasis is placed on a "monomicelle assembly" strategy as an emerging and powerful approach to direct the formation of mesostructured TiO2 with precise control over its structural orientations and architectures. Furthermore, typical examples of mesoporous TiO2 for applications in batteries and photocatalysis are highlighted. The Review ends with an outlook towards the synthesis of mesoporous TiO2 with tailored architectures by self-assembly, which could pave the way for developing advanced energy conversion and storage devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2022 Tipo de documento: Article