Your browser doesn't support javascript.
loading
Ultra-deep whole genome bisulfite sequencing reveals a single methylation hotspot in human brain mitochondrial DNA.
Guitton, Romain; Dölle, Christian; Alves, Guido; Ole-Bjørn, Tysnes; Nido, Gonzalo S; Tzoulis, Charalampos.
Afiliação
  • Guitton R; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
  • Dölle C; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
  • Alves G; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
  • Ole-Bjørn T; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
  • Nido GS; The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway.
  • Tzoulis C; Department of Mathematics and Natural Sciences, University of Stavanger, University of Bergen, Stavanger, Norway.
Epigenetics ; 17(8): 906-921, 2022 08.
Article em En | MEDLINE | ID: mdl-35253628
ABSTRACT
While DNA methylation is established as a major regulator of gene expression in the nucleus, the existence of mitochondrial DNA (mtDNA) methylation remains controversial. Here, we characterized the mtDNA methylation landscape in the prefrontal cortex of neurological healthy individuals (n=26) and patients with Parkinson's disease (n=27), using a combination of whole-genome bisulphite sequencing (WGBS) and bisulphite-independent methods. Accurate mtDNA mapping from WGBS data required alignment to an mtDNA reference only, to avoid misalignment to nuclear mitochondrial pseudogenes. Once correctly aligned, WGBS data provided ultra-deep mtDNA coverage (16,723 ± 7,711) and revealed overall very low levels of cytosine methylation. The highest methylation levels (5.49 ± 0.97%) were found on CpG position m.545, located in the heavy-strand promoter 1 region. The m.545 methylation was validated using a combination of methylation-sensitive DNA digestion and quantitative PCR analysis. We detected no association between mtDNA methylation profile and Parkinson's disease. Interestingly, m.545 methylation correlated with the levels of mtDNA transcripts, suggesting a putative role in regulating mtDNA gene expression. In addition, we propose a robust framework for methylation analysis of mtDNA from WGBS data, which is less prone to false-positive findings due to misalignment of nuclear mitochondrial pseudogene sequences.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / DNA Mitocondrial Limite: Humans Idioma: En Revista: Epigenetics Assunto da revista: GENETICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Noruega

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / DNA Mitocondrial Limite: Humans Idioma: En Revista: Epigenetics Assunto da revista: GENETICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Noruega