Your browser doesn't support javascript.
loading
Mutant ANP induces mitochondrial and ion channel remodeling in a human iPSC-derived atrial fibrillation model.
Ly, Olivia T; Chen, Hanna; Brown, Grace E; Hong, Liang; Wang, Xinge; Han, Yong Duk; Pavel, Mahmud Arif; Sridhar, Arvind; Maienschein-Cline, Mark; Chalazan, Brandon; Ong, Sang-Ging; Abdelhady, Khaled; Massad, Malek; Rizkallah, Lona Ernst; Rehman, Jalees; Khetani, Salman R; Darbar, Dawood.
Afiliação
  • Ly OT; Division of Cardiology, Department of Medicine.
  • Chen H; Department of Biomedical Engineering.
  • Brown GE; Division of Cardiology, Department of Medicine.
  • Hong L; Department of Biomedical Engineering.
  • Wang X; Division of Cardiology, Department of Medicine.
  • Han YD; Division of Cardiology, Department of Medicine.
  • Pavel MA; Department of Biomedical Engineering.
  • Sridhar A; Department of Biomedical Engineering.
  • Maienschein-Cline M; Division of Cardiology, Department of Medicine.
  • Chalazan B; Division of Cardiology, Department of Medicine.
  • Ong SG; Department of Physiology.
  • Abdelhady K; Research Informatics Core, Research Resources Center.
  • Massad M; Division of Cardiology, Department of Medicine.
  • Rizkallah LE; Division of Cardiology, Department of Medicine.
  • Rehman J; Department of Pharmacology and Regenerative Medicine; and.
  • Khetani SR; Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA.
  • Darbar D; Division of Cardiothoracic Surgery, Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, USA.
JCI Insight ; 7(7)2022 04 08.
Article em En | MEDLINE | ID: mdl-35393944
ABSTRACT
Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) can model heritable arrhythmias to personalize therapies for individual patients. Although atrial fibrillation (AF) is a leading cause of cardiovascular morbidity and mortality, current platforms to generate iPSC-atrial (a) CMs are inadequate for modeling AF. We applied a combinatorial engineering approach, which integrated multiple physiological cues, including metabolic conditioning and electrical stimulation, to generate mature iPSC-aCMs. Using the patient's own atrial tissue as a gold standard benchmark, we assessed the electrophysiological, structural, metabolic, and molecular maturation of iPSC-aCMs. Unbiased transcriptomic analysis and inference from gene regulatory networks identified key gene expression pathways and transcription factors mediating atrial development and maturation. Only mature iPSC-aCMs generated from patients with heritable AF carrying the non-ion channel gene (NPPA) mutation showed enhanced expression and function of a cardiac potassium channel and revealed mitochondrial electron transport chain dysfunction. Collectively, we propose that ion channel remodeling in conjunction with metabolic defects created an electrophysiological substrate for AF. Overall, our electro-metabolic approach generated mature human iPSC-aCMs that unmasked the underlying mechanism of the first non-ion channel gene, NPPA, that causes AF. Our maturation approach will allow for the investigation of the molecular underpinnings of heritable AF and the development of personalized therapies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Fator Natriurético Atrial / Células-Tronco Pluripotentes Induzidas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: JCI Insight Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / Fator Natriurético Atrial / Células-Tronco Pluripotentes Induzidas Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: JCI Insight Ano de publicação: 2022 Tipo de documento: Article