Your browser doesn't support javascript.
loading
Challenges of modeling nanostructured materials for photocatalytic water splitting.
Samanta, Bipasa; Morales-García, Ángel; Illas, Francesc; Goga, Nicolae; Anta, Juan Antonio; Calero, Sofia; Bieberle-Hütter, Anja; Libisch, Florian; Muñoz-García, Ana B; Pavone, Michele; Caspary Toroker, Maytal.
Afiliação
  • Samanta B; Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3600003, Israel.
  • Morales-García Á; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain. angel.morales@ub.edu.
  • Illas F; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain. angel.morales@ub.edu.
  • Goga N; Faculty of Engineering in Foreign Languages, Universitatea Politehnica din Bucuresti, Bucuresti, Romania. n.goga@rug.nl.
  • Anta JA; Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Crta. De Utrera km. 1, 41089 Sevilla, Spain. anta@upo.es.
  • Calero S; Materials Simulation & Modeling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
  • Bieberle-Hütter A; Electrochemical Materials and Interfaces, Dutch Institute for Fundamental Energy Research (DIFFER), 5600 HH Eindhoven, The Netherlands. a.bieberle@differ.nl.
  • Libisch F; Institute for Theoretical Physics, TU Wien, 1040 Vienna, Austria. florian.libisch@tuwien.ac.at.
  • Muñoz-García AB; Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy. anabelen.munozgarcia@unina.it.
  • Pavone M; Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy. mipavone@unina.it.
  • Caspary Toroker M; Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3600003, Israel.
Chem Soc Rev ; 51(9): 3794-3818, 2022 May 10.
Article em En | MEDLINE | ID: mdl-35439803
ABSTRACT
Understanding the water splitting mechanism in photocatalysis is a rewarding goal as it will allow producing clean fuel for a sustainable life in the future. However, identifying the photocatalytic mechanisms by modeling photoactive nanoparticles requires sophisticated computational techniques based on multiscale modeling. In this review, we will survey the strengths and drawbacks of currently available theoretical methods at different length and accuracy scales. Understanding the surface-active site through Density Functional Theory (DFT) using new, more accurate exchange-correlation functionals plays a key role for surface engineering. Larger scale dynamics of the catalyst/electrolyte interface can be treated with Molecular Dynamics albeit there is a need for more generalizations of force fields. Monte Carlo and Continuum Modeling techniques are so far not the prominent path for modeling water splitting but interest is growing due to the lower computational cost and the feasibility to compare the modeling outcome directly to experimental data. The future challenges in modeling complex nano-photocatalysts involve combining different methods in a hierarchical way so that resources are spent wisely at each length scale, as well as accounting for excited states chemistry that is important for photocatalysis, a path that will bring devices closer to the theoretical limit of photocatalytic efficiency.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Soc Rev Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Israel

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Soc Rev Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Israel