Your browser doesn't support javascript.
loading
Nonlinear wave evolution with data-driven breaking.
Eeltink, D; Branger, H; Luneau, C; He, Y; Chabchoub, A; Kasparian, J; van den Bremer, T S; Sapsis, T P.
Afiliação
  • Eeltink D; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States. eeltink@mit.edu.
  • Branger H; Department of Engineering Science, University of Oxford, Oxford, UK. eeltink@mit.edu.
  • Luneau C; Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France.
  • He Y; Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France.
  • Chabchoub A; Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, Sydney, NSW, Australia.
  • Kasparian J; Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, Sydney, NSW, Australia.
  • van den Bremer TS; Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan.
  • Sapsis TP; Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
Nat Commun ; 13(1): 2343, 2022 Apr 29.
Article em En | MEDLINE | ID: mdl-35487899
ABSTRACT
Wave breaking is the main mechanism that dissipates energy input into ocean waves by wind and transferred across the spectrum by nonlinearity. It determines the properties of a sea state and plays a crucial role in ocean-atmosphere interaction, ocean pollution, and rogue waves. Owing to its turbulent nature, wave breaking remains too computationally demanding to solve using direct numerical simulations except in simple, short-duration circumstances. To overcome this challenge, we present a blended machine learning framework in which a physics-based nonlinear evolution model for deep-water, non-breaking waves and a recurrent neural network are combined to predict the evolution of breaking waves. We use wave tank measurements rather than simulations to provide training data and use a long short-term memory neural network to apply a finite-domain correction to the evolution model. Our blended machine learning framework gives excellent predictions of breaking and its effects on wave evolution, including for external data.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos