Giant Photoelasticity of Polaritons for Detection of Coherent Phonons in a Superlattice with Quantum Sensitivity.
Phys Rev Lett
; 128(15): 157401, 2022 Apr 15.
Article
em En
| MEDLINE
| ID: mdl-35499885
The functionality of phonon-based quantum devices largely depends on the efficiency of the interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of the phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.g., an exciton, with which a photon forms a polariton. In this work, we discover a giant photoelasticity of exciton-polaritons in a short-period superlattice and exploit it to detect propagating acoustic phonons. We demonstrate that 42 GHz coherent phonons can be detected with extremely high sensitivity in the time domain Brillouin oscillations by probing with photons in the spectral vicinity of the polariton resonance.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Alemanha