Your browser doesn't support javascript.
loading
Measuring inter-individual differences in behavioural types of gilthead seabreams in the laboratory using deep learning.
Signaroli, Marco; Lana, Arancha; Martorell-Barceló, Martina; Sanllehi, Javier; Barcelo-Serra, Margarida; Aspillaga, Eneko; Mulet, Júlia; Alós, Josep.
Afiliação
  • Signaroli M; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Lana A; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Martorell-Barceló M; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Sanllehi J; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Barcelo-Serra M; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Aspillaga E; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Mulet J; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
  • Alós J; Fish Ecology Group, Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Illes Balears, Spain.
PeerJ ; 10: e13396, 2022.
Article em En | MEDLINE | ID: mdl-35539012
ABSTRACT
Deep learning allows us to automatize the acquisition of large amounts of behavioural animal data with applications for fisheries and aquaculture. In this work, we have trained an image-based deep learning algorithm, the Faster R-CNN (Faster region-based convolutional neural network), to automatically detect and track the gilthead seabream, Sparus aurata, to search for individual differences in behaviour. We collected videos using a novel Raspberry Pi high throughput recording system attached to individual experimental behavioural arenas. From the continuous recording during behavioural assays, we acquired and labelled a total of 14,000 images and used them, along with data augmentation techniques, to train the network. Then, we evaluated the performance of our network at different training levels, increasing the number of images and applying data augmentation. For every validation step, we processed more than 52,000 images, with and without the presence of the gilthead seabream, in normal and altered (i.e., after the introduction of a non-familiar object to test for explorative behaviour) behavioural arenas. The final and best version of the neural network, trained with all the images and with data augmentation, reached an accuracy of 92,79% ± 6.78% [89.24-96.34] of correct classification and 10.25 ± 61.59 pixels [6.59-13.91] of fish positioning error. Our recording system based on a Raspberry Pi and a trained convolutional neural network provides a valuable non-invasive tool to automatically track fish movements in experimental arenas and, using the trajectories obtained during behavioural tests, to assay behavioural types.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dourada / Aprendizado Profundo Limite: Animals Idioma: En Revista: PeerJ Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dourada / Aprendizado Profundo Limite: Animals Idioma: En Revista: PeerJ Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Espanha