Closed testing with Globaltest, with application in metabolomics.
Biometrics
; 79(2): 1103-1113, 2023 06.
Article
em En
| MEDLINE
| ID: mdl-35567306
The Globaltest is a powerful test for the global null hypothesis that there is no association between a group of features and a response of interest, which is popular in pathway testing in metabolomics. Evaluating multiple feature sets, however, requires multiple testing correction. In this paper, we propose a multiple testing method, based on closed testing, specifically designed for the Globaltest. The proposed method controls the familywise error rate simultaneously over all possible feature sets, and therefore allows post hoc inference, that is, the researcher may choose feature sets of interest after seeing the data without jeopardizing error control. To circumvent the exponential computation time of closed testing, we derive a novel shortcut that allows exact closed testing to be performed on the scale of metabolomics data. An R package ctgt is available on comprehensive R archive network for the implementation of the shortcut procedure, with applications on several real metabolomics data examples.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Metabolômica
Idioma:
En
Revista:
Biometrics
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Holanda