Your browser doesn't support javascript.
loading
The dynamic atmospheric and aeolian environment of Jezero crater, Mars.
Newman, Claire E; Hueso, Ricardo; Lemmon, Mark T; Munguira, Asier; Vicente-Retortillo, Álvaro; Apestigue, Víctor; Martínez, Germán M; Toledo, Daniel; Sullivan, Rob; Herkenhoff, Ken E; de la Torre Juárez, Manuel; Richardson, Mark I; Stott, Alexander E; Murdoch, Naomi; Sanchez-Lavega, Agustín; Wolff, Michael J; Arruego, Ignacio; Sebastián, Eduardo; Navarro, Sara; Gómez-Elvira, Javier; Tamppari, Leslie; Viúdez-Moreiras, Daniel; Harri, Ari-Matti; Genzer, Maria; Hieta, Maria; Lorenz, Ralph D; Conrad, Pan; Gómez, Felipe; McConnochie, Timothy H; Mimoun, David; Tate, Christian; Bertrand, Tanguy; Bell, James F; Maki, Justin N; Rodriguez-Manfredi, Jose Antonio; Wiens, Roger C; Chide, Baptiste; Maurice, Sylvestre; Zorzano, Maria-Paz; Mora, Luis; Baker, Mariah M; Banfield, Don; Pla-Garcia, Jorge; Beyssac, Olivier; Brown, Adrian; Clark, Ben; Lepinette, Alain; Montmessin, Franck; Fischer, Erik; Patel, Priyaben.
Afiliação
  • Newman CE; Aeolis Research, Chandler, AZ, USA.
  • Hueso R; Universidad del País Vasco UPV/EHU, Bilbao, Spain.
  • Lemmon MT; Space Science Institute, Boulder, CO, USA.
  • Munguira A; Universidad del País Vasco UPV/EHU, Bilbao, Spain.
  • Vicente-Retortillo Á; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Apestigue V; INTA, Madrid, Spain.
  • Martínez GM; Lunar and Planetary Institute, USRA, Houston, TX, USA.
  • Toledo D; University of Michigan, Ann Arbor, MI, USA.
  • Sullivan R; INTA, Madrid, Spain.
  • Herkenhoff KE; Cornell University, Ithaca, NY, USA.
  • de la Torre Juárez M; USGS Astrogeology Science Center, Flagstaff, AZ, USA.
  • Richardson MI; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA.
  • Stott AE; Aeolis Research, Chandler, AZ, USA.
  • Murdoch N; ISAE-SUPAERO, Université de Toulouse, Toulouse, France.
  • Sanchez-Lavega A; ISAE-SUPAERO, Université de Toulouse, Toulouse, France.
  • Wolff MJ; Universidad del País Vasco UPV/EHU, Bilbao, Spain.
  • Arruego I; Space Science Institute, Boulder, CO, USA.
  • Sebastián E; INTA, Madrid, Spain.
  • Navarro S; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Gómez-Elvira J; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Tamppari L; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Viúdez-Moreiras D; INTA, Madrid, Spain.
  • Harri AM; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA.
  • Genzer M; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Hieta M; Finnish Meteorological Institute, Helsinki, Finland.
  • Lorenz RD; Finnish Meteorological Institute, Helsinki, Finland.
  • Conrad P; Finnish Meteorological Institute, Helsinki, Finland.
  • Gómez F; Johns Hopkins Applied Physics Lab, Laurel, MD, USA.
  • McConnochie TH; Carnegie Institution for Science, Washington, DC, USA.
  • Mimoun D; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Tate C; Space Science Institute, Boulder, CO, USA.
  • Bertrand T; University of Maryland, College Park, MD, USA.
  • Bell JF; ISAE-SUPAERO, Université de Toulouse, Toulouse, France.
  • Maki JN; Cornell University, Ithaca, NY, USA.
  • Rodriguez-Manfredi JA; LESIA, Observatoire de Paris, Meudon, France.
  • Wiens RC; Arizona State University, Tempe, AZ, USA.
  • Chide B; Jet Propulsion Laboratory-California Institute of Technology, Pasadena, CA, USA.
  • Maurice S; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Zorzano MP; Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Mora L; Purdue University, West Lafayette, IN, USA.
  • Baker MM; IRAP-CNRS, Toulouse, France.
  • Banfield D; IRAP-CNRS, Toulouse, France.
  • Pla-Garcia J; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Beyssac O; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Brown A; Smithsonian National Air and Space Museum, Washington, DC, USA.
  • Clark B; Cornell University, Ithaca, NY, USA.
  • Lepinette A; NASA Ames, Mountain View, CA, USA.
  • Montmessin F; Space Science Institute, Boulder, CO, USA.
  • Fischer E; Centro de Astrobiologia, INTA, Madrid, Spain.
  • Patel P; IMPMC, CNRS-Sorbonne Université, Paris, France.
Sci Adv ; 8(21): eabn3783, 2022 May 27.
Article em En | MEDLINE | ID: mdl-35613267
ABSTRACT
Despite the importance of sand and dust to Mars geomorphology, weather, and exploration, the processes that move sand and that raise dust to maintain Mars' ubiquitous dust haze and to produce dust storms have not been well quantified in situ, with missions lacking either the necessary sensors or a sufficiently active aeolian environment. Perseverance rover's novel environmental sensors and Jezero crater's dusty environment remedy this. In Perseverance's first 216 sols, four convective vortices raised dust locally, while, on average, four passed the rover daily, over 25% of which were significantly dusty ("dust devils"). More rarely, dust lifting by nonvortex wind gusts was produced by daytime convection cells advected over the crater by strong regional daytime upslope winds, which also control aeolian surface features. One such event covered 10 times more area than the largest dust devil, suggesting that dust devils and wind gusts could raise equal amounts of dust under nonstorm conditions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Adv Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos