Your browser doesn't support javascript.
loading
Rotor strength and critical speed analysis of a vertical long shaft fire pump connected with different shaft lengths.
Song, Haiqin; Zhang, Jinfeng; Zhang, Fan.
Afiliação
  • Song H; National Research Center of Pumps, Jiangsu University, Zhenjiang, 212013, China. shqz1811034@163.com.
  • Zhang J; National Research Center of Pumps, Jiangsu University, Zhenjiang, 212013, China.
  • Zhang F; National Research Center of Pumps, Jiangsu University, Zhenjiang, 212013, China.
Sci Rep ; 12(1): 9351, 2022 Jun 07.
Article em En | MEDLINE | ID: mdl-35672384
ABSTRACT
The vertical long shaft fire pump (VLSFP) is mainly used in fire-fighting places far away from land and lacking large amounts of water supply. The paper selected the XBC18-178-240LC3 model of VLSFP as the research object. First, the experimental-numerical hydraulic performance of the single-VLSFP was carried out, and then the hydraulic performance of the multi-VLSFP was analyzed by the same numerical simulation method as single-VLSFP. After that, three rotor models (Z4 model, Z5 model-original model and Z6 model) were designed by modeling software, connected by different length and number of the shaft section under the same total length of the intermediate shafts. Finally, the rotor's strength and critical speed of three models were analyzed and checked via the CFD simulation and the Workbench software. The study mainly found (1) Through the strength check of the impeller, maximum equivalent stress of the three models was less than the allowable stress of the rotor material, which indicated the structural design of them met the safety requirement; (2) Through the critical speed check of the shafting rotor, the working speed of the VLSFP was lower than 0.8 times the first-order critical speed of the three models, which indicated the rotor could avoid the resonance and the structure of the three models met the dynamic design requirement. According to the stress check of the impeller and the critical speed check of the shafting rotor, combining the time and labor cost when the VLSFP was installed and disassembled many times before and after the test or operation, the paper selected the Z4 model to be the optimal model, which could provide a theoretical support for the subsequent structure design optimization of the vertical long shaft fire pump.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China