Your browser doesn't support javascript.
loading
Transcriptome Analysis Reveals Crosstalk between the Abscisic Acid and Jasmonic Acid Signaling Pathways in Rice-Mediated Defense against Nilaparvata lugens.
Li, Jitong; Chen, Lin; Ding, Xu; Fan, Wenyan; Liu, Jinglan.
Afiliação
  • Li J; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  • Chen L; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  • Ding X; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  • Fan W; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
  • Liu J; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
Int J Mol Sci ; 23(11)2022 Jun 05.
Article em En | MEDLINE | ID: mdl-35682997
ABSTRACT
The brown planthopper (BPH) impacts both rice yield and quality. The exogenous application of abscisic acid (ABA) and jasmonic acid (JA) has been previously shown to induce rice resistance to BPH; however, the regulation of rice-mediated defense by these plant growth regulators is unclear. We applied exogenous JA and ABA to rice and analyzed molecular responses to BPH infestation. Nine RNA libraries were sequenced, and 6218 differentially expressed genes (DEGs) were generated and annotated. After ABA + BPH and JA + BPH treatments, 3491 and 2727 DEGs, respectively, were identified when compared with the control (BPH alone). GO enrichment and KEGG pathway analysis showed that the expression of several JA pathway genes (OsAOS2, encoding allene oxide synthase; OsOPR, 12-oxo-phytodienoic acid reductase; and OsACOX, acy1-CoA oxidase) were significantly up-regulated after ABA + BPH treatment. Furthermore, exogenous JA increased the expression of genes involved in ABA synthesis. Meanwhile, the expression levels of genes encoding WRKY transcription factors, myelocytomatosis protein 2 (MYC2) and basic leucine zippers (bZIPs) were up-regulated significantly, indicating that ABA and JA might function together to increase the expression of transcription factors during the rice defense response. The DEGs identified in this study provide vital insights into the synergism between ABA and JA and further contribute to the mechanistic basis of rice resistance to BPH.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Hemípteros Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Hemípteros Tipo de estudo: Prognostic_studies Idioma: En Revista: Int J Mol Sci Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China