Your browser doesn't support javascript.
loading
Lorentz-Boost-Driven Magneto-Optics in a Dirac Nodal-Line Semimetal.
Wyzula, Jan; Lu, Xin; Santos-Cottin, David; Mukherjee, Dibya Kanti; Mohelský, Ivan; Le Mardelé, Florian; Novák, Jirí; Novak, Mario; Sankar, Raman; Krupko, Yuriy; Piot, Benjamin A; Lee, Wei-Li; Akrap, Ana; Potemski, Marek; Goerbig, Mark O; Orlita, Milan.
Afiliação
  • Wyzula J; LNCMI-CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, 25 rue des Martyrs, BP166, Grenoble Cedex 9, 38042, France.
  • Lu X; Laboratoire de Physique des Solides, Université Paris Saclay, CNRS UMR 8502, Orsay Cedex, 91405, France.
  • Santos-Cottin D; Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, 1700, Switzerland.
  • Mukherjee DK; Laboratoire de Physique des Solides, Université Paris Saclay, CNRS UMR 8502, Orsay Cedex, 91405, France.
  • Mohelský I; Department of Physics, Indiana University, Bloomington, IN, 47405, USA.
  • Le Mardelé F; LNCMI-CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, 25 rue des Martyrs, BP166, Grenoble Cedex 9, 38042, France.
  • Novák J; Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, 1700, Switzerland.
  • Novak M; Department of Condensed Matter Physics, Masaryk University, Kotlárská 2, 611 37, Brno, Czech Republic.
  • Sankar R; Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia.
  • Krupko Y; Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
  • Piot BA; LNCMI-CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, 25 rue des Martyrs, BP166, Grenoble Cedex 9, 38042, France.
  • Lee WL; Institut d'Electronique et des Systemes, CNRS, UMR 5214, Université de Montpellier, Montpellier, 34000, France.
  • Akrap A; LNCMI-CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, 25 rue des Martyrs, BP166, Grenoble Cedex 9, 38042, France.
  • Potemski M; Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
  • Goerbig MO; Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, 1700, Switzerland.
  • Orlita M; LNCMI-CNRS UPR3228, Université Grenoble Alpes, Université Toulouse 3, INSA Toulouse, EMFL, 25 rue des Martyrs, BP166, Grenoble Cedex 9, 38042, France.
Adv Sci (Weinh) ; 9(23): e2105720, 2022 Aug.
Article em En | MEDLINE | ID: mdl-35713280
ABSTRACT
Optical response of crystalline solids is to a large extent driven by excitations that promote electrons among individual bands. This allows one to apply optical and magneto-optical methods to determine experimentally the energy band gap -a fundamental property crucial to our understanding of any solid-with a great precision. Here it is shown that such conventional methods, applied with great success to many materials in the past, do not work in topological Dirac semimetals with a dispersive nodal line. There, the optically deduced band gap depends on how the magnetic field is oriented with respect to the crystal axes. Such highly unusual behavior is explained in terms of band-gap renormalization driven by Lorentz boosts which results from the Lorentz-covariant form of the Dirac Hamiltonian relevant for the nodal line at low energies.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França