Your browser doesn't support javascript.
loading
In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism.
Zhou, Zhixuan; Maxeiner, Konrad; Moscariello, Pierpaolo; Xiang, Siyuan; Wu, Yingke; Ren, Yong; Whitfield, Colette J; Xu, Lujuan; Kaltbeitzel, Anke; Han, Shen; Mücke, David; Qi, Haoyuan; Wagner, Manfred; Kaiser, Ute; Landfester, Katharina; Lieberwirth, Ingo; Ng, David Y W; Weil, Tanja.
Afiliação
  • Zhou Z; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Maxeiner K; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Moscariello P; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Xiang S; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Wu Y; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Ren Y; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Whitfield CJ; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Xu L; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Kaltbeitzel A; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Han S; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Mücke D; Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany.
  • Qi H; Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany.
  • Wagner M; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany.
  • Kaiser U; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Landfester K; Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany.
  • Lieberwirth I; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Ng DYW; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
  • Weil T; Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
J Am Chem Soc ; 144(27): 12219-12228, 2022 07 13.
Article em En | MEDLINE | ID: mdl-35729777
ABSTRACT
Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Platina / Nanoestruturas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Platina / Nanoestruturas Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha