Your browser doesn't support javascript.
loading
Surface Engineering of Laser-Induced Graphene Enables Long-Term Monitoring of On-Body Uric Acid and pH Simultaneously.
Zhang, Liqiang; Wang, Lang; Li, Jiye; Cui, Can; Zhou, Ziqian; Wen, Liaoyong.
Afiliação
  • Zhang L; Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.
  • Wang L; Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.
  • Li J; Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.
  • Cui C; Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States of America.
  • Zhou Z; Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.
  • Wen L; Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.
Nano Lett ; 22(13): 5451-5458, 2022 07 13.
Article em En | MEDLINE | ID: mdl-35731860
ABSTRACT
Laser-induced graphene (LIG) suffers from serious decay in long-term biosensing, which greatly restricts its practical applications. Herein, we report a new strategy to engineer the LIG surface with Au clusters and chitosan sequentially to form a C-Au-LIG electrode with a superhydrophilic and highly conductive 3D graphene surface, which demonstrates superior performance and negligible decay in both long-term storage and practical usage in vitro and in vivo environments. Moreover, the C-Au-LIG electrode can be used for detecting uric acid (UA) and pH simultaneously from a single differential pulse voltammetry curve with low-detection limitation, high accuracy, and negligible interference with other sweat biomarkers. The integrated C-Au-LIG wearable biosensor was employed to continuously monitor the UA content in human sweat, which can well reflect the daily intake of purines for at least 10 days. Therefore, the C-Au-LIG electrode demonstrates significant application potential and provides inspiration for surface engineering of other biosensor materials and electrodes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Grafite Limite: Humans Idioma: En Revista: Nano Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Grafite Limite: Humans Idioma: En Revista: Nano Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China