Your browser doesn't support javascript.
loading
Accurate and Automatic Extraction of Cell Self-Rotation Speed in an ODEP Field Using an Area Change Algorithm.
Wu, Haiyang; Dang, Dan; Yang, Xieliu; Wang, Junhai; Qi, Ruolong; Yang, Wenguang; Liang, Wenfeng.
Afiliação
  • Wu H; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Dang D; School of Science, Shenyang Jianzhu University, Shenyang 110168, China.
  • Yang X; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Wang J; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Qi R; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Yang W; School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
  • Liang W; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
Micromachines (Basel) ; 13(6)2022 May 24.
Article em En | MEDLINE | ID: mdl-35744432
ABSTRACT
Cells are complex biological units that can sense physicochemical stimuli from their surroundings and respond positively to them through characterization of the cell behavior. Thus, understanding the motions of cells is important for investigating their intrinsic properties and reflecting their various states. Computer-vision-based methods for elucidating cell behavior offer a novel approach to accurately extract cell motions. Here, we propose an algorithm based on area change to automatically extract the self-rotation of cells in an optically induced dielectrophoresis field. To obtain a clear and complete outline of the cell structure, dark corner removal and contrast stretching techniques are used in the pre-processing stage. The self-rotation speed is calculated by determining the frequency of the cell area changes in all of the captured images. The algorithm is suitable for calculating in-plane and out-of-plane rotations, while addressing the problem of identical images at different rotation angles when dealing with rotations of spherical and flat cells. In addition, the algorithm can be used to determine the motion trajectory of cells. The experimental results show that the algorithm can efficiently and accurately calculate cell rotation speeds of up to ~155 rpm. Potential applications of the proposed algorithm include cell morphology extraction, cell classification, and characterization of the cell mechanical properties. The algorithm can be very helpful for those who are interested in using computer vision and artificial-intelligence-based ideology in single-cell studies, drug treatment, and other bio-related fields.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China