Your browser doesn't support javascript.
loading
Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis.
Zhang, Xiang; Yang, Yi; Shen, Yi-Wei; Zhang, Ke-Rui; Jiang, Ze-Kun; Ma, Li-Tai; Ding, Chen; Wang, Bei-Yu; Meng, Yang; Liu, Hao.
Afiliação
  • Zhang X; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Yang Y; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Shen YW; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Zhang KR; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Jiang ZK; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610000, China.
  • Ma LT; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Ding C; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Wang BY; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Meng Y; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China.
  • Liu H; Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Rd, Chengdu, 610041, China. liuhao6304@126.com.
Eur Radiol ; 32(10): 7196-7216, 2022 Oct.
Article em En | MEDLINE | ID: mdl-35754091
ABSTRACT

OBJECTIVES:

To systematically quantify the diagnostic accuracy and identify potential covariates affecting the performance of artificial intelligence (AI) in diagnosing orthopedic fractures.

METHODS:

PubMed, Embase, Web of Science, and Cochrane Library were systematically searched for studies on AI applications in diagnosing orthopedic fractures from inception to September 29, 2021. Pooled sensitivity and specificity and the area under the receiver operating characteristic curves (AUC) were obtained. This study was registered in the PROSPERO database prior to initiation (CRD 42021254618).

RESULTS:

Thirty-nine were eligible for quantitative analysis. The overall pooled AUC, sensitivity, and specificity were 0.96 (95% CI 0.94-0.98), 90% (95% CI 87-92%), and 92% (95% CI 90-94%), respectively. In subgroup analyses, multicenter designed studies yielded higher sensitivity (92% vs. 88%) and specificity (94% vs. 91%) than single-center studies. AI demonstrated higher sensitivity with transfer learning (with vs. without 92% vs. 87%) or data augmentation (with vs. without 92% vs. 87%), compared to those without. Utilizing plain X-rays as input images for AI achieved results comparable to CT (AUC 0.96 vs. 0.96). Moreover, AI achieved comparable results to humans (AUC 0.97 vs. 0.97) and better results than non-expert human readers (AUC 0.98 vs. 0.96; sensitivity 95% vs. 88%).

CONCLUSIONS:

AI demonstrated high accuracy in diagnosing orthopedic fractures from medical images. Larger-scale studies with higher design quality are needed to validate our findings. KEY POINTS • Multicenter study design, application of transfer learning, and data augmentation are closely related to improving the performance of artificial intelligence models in diagnosing orthopedic fractures. • Utilizing plain X-rays as input images for AI to diagnose fractures achieved results comparable to CT (AUC 0.96 vs. 0.96). • AI achieved comparable results to humans (AUC 0.97 vs. 0.97) but was superior to non-expert human readers (AUC 0.98 vs. 0.96, sensitivity 95% vs. 88%) in diagnosing fractures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ortopedia / Fraturas Ósseas Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies / Systematic_reviews Limite: Humans Idioma: En Revista: Eur Radiol Assunto da revista: RADIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ortopedia / Fraturas Ósseas Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies / Systematic_reviews Limite: Humans Idioma: En Revista: Eur Radiol Assunto da revista: RADIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China