Your browser doesn't support javascript.
loading
MOJITOO: a fast and universal method for integration of multimodal single-cell data.
Cheng, Mingbo; Li, Zhijian; Costa, Ivan G.
Afiliação
  • Cheng M; Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074 Aachen, Germany.
  • Li Z; Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074 Aachen, Germany.
  • Costa IG; Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074 Aachen, Germany.
Bioinformatics ; 38(Suppl 1): i282-i289, 2022 06 24.
Article em En | MEDLINE | ID: mdl-35758807
MOTIVATION: The advent of multi-modal single-cell sequencing techniques have shed new light on molecular mechanisms by simultaneously inspecting transcriptomes, epigenomes and proteomes of the same cell. However, to date, the existing computational approaches for integration of multimodal single-cell data are either computationally expensive, require the delineation of parameters or can only be applied to particular modalities. RESULTS: Here we present a single-cell multi-modal integration method, named Multi-mOdal Joint IntegraTion of cOmpOnents (MOJITOO). MOJITOO uses canonical correlation analysis for a fast and parameter free detection of a shared representation of cells from multimodal single-cell data. Moreover, estimated canonical components can be used for interpretation, i.e. association of modality-specific molecular features with the latent space. We evaluate MOJITOO using bi- and tri-modal single-cell datasets and show that MOJITOO outperforms existing methods regarding computational requirements, preservation of original latent spaces and clustering. AVAILABILITY AND IMPLEMENTATION: The software, code and data for benchmarking are available at https://github.com/CostaLab/MOJITOO and https://doi.org/10.5281/zenodo.6348128. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Transcriptoma Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Transcriptoma Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha