Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells.
Neuron
; 110(16): 2607-2624.e8, 2022 08 17.
Article
em En
| MEDLINE
| ID: mdl-35767995
Regulatory programs governing neuronal death and axon regeneration in neurodegenerative diseases remain poorly understood. In adult mice, optic nerve crush (ONC) injury by severing retinal ganglion cell (RGC) axons results in massive RGC death and regenerative failure. We performed an in vivo CRISPR-Cas9-based genome-wide screen of 1,893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify injury-responsive TFs and their targets. These analyses converged on four TFs as critical survival regulators, of which ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity and ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs protects RGCs in a glaucoma model. Our results reveal core transcription programs that transform an initial axonal insult into a degenerative process and suggest novel strategies for treating neurodegenerative diseases.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Células Ganglionares da Retina
/
Traumatismos do Nervo Óptico
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Neuron
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos