Your browser doesn't support javascript.
loading
Finite-element-based resonant ultrasound spectroscopy for measurement of multi-material samples.
Geimer, Paul R; Ulrich, T J; Beardslee, Luke B; Hayne, Mathew L; Remillieux, Marcel C; Saleh, Tarik A; Freibert, Franz J.
Afiliação
  • Geimer PR; Detonation Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Ulrich TJ; Detonation Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Beardslee LB; Geophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Hayne ML; Materials Science in Radiation and Dynamics Extremes Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Remillieux MC; Geophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Saleh TA; Materials Science in Radiation and Dynamics Extremes Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Freibert FJ; Seaborg Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Acoust Soc Am ; 151(6): 3633, 2022 Jun.
Article em En | MEDLINE | ID: mdl-35778207
Understanding the elastic properties of materials is critical for their safe incorporation and predictable performance. Current methods of bulk elastic characterization often have notable limitations for in situ structural applications, with usage restricted to simple geometries and material distributions. To address these existing issues, this study sought to expand the capabilities of resonant ultrasound spectroscopy (RUS), an established nondestructive evaluation method, to include the characterization of isotropic multi-material samples. In this work, finite-element-based RUS analysis consisted of numerical simulations and experimental testing of composite samples comprised of material pairs with varying elasticity and density contrasts. Utilizing genetic algorithm inversion and mode matching, our results demonstrate that elastic properties of multi-material samples can be reliably identified within several percent of known or nominal values using a minimum number of identified resonance modes, given sample mass is held consistent. The accurate recovery of material properties for composite samples of varying material similarity and geometry expands the pool of viable samples for RUS and advances the method towards in situ inspection and evaluation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Acoust Soc Am Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos