Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine-Learning Models.
Adv Mater
; 34(34): e2202911, 2022 Aug.
Article
em En
| MEDLINE
| ID: mdl-35790036
2D transition metal dichalcogenides (TMDCs) with intense and tunable photoluminescence (PL) have opened up new opportunities for optoelectronic and photonic applications such as light-emitting diodes, photodetectors, and single-photon emitters. Among the standard characterization tools for 2D materials, Raman spectroscopy stands out as a fast and non-destructive technique capable of probing material's crystallinity and perturbations such as doping and strain. However, a comprehensive understanding of the correlation between photoluminescence and Raman spectra in monolayer MoS2 remains elusive due to its highly nonlinear nature. Here, the connections between PL signatures and Raman modes are systematically explored, providing comprehensive insights into the physical mechanisms correlating PL and Raman features. This study's analysis further disentangles the strain and doping contributions from the Raman spectra through machine-learning models. First, a dense convolutional network (DenseNet) to predict PL maps by spatial Raman maps is deployed. Moreover, a gradient boosted trees model (XGBoost) with Shapley additive explanation (SHAP) to bridge the impact of individual Raman features in PL features is applied. Last, a support vector machine (SVM) to project PL features on Raman frequencies is adopted. This work may serve as a methodology for applying machine learning to characterizations of 2D materials.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos