Your browser doesn't support javascript.
loading
Evidence for Dissociation and Ionization in Shock Compressed Nitrogen to 800 GPa.
Kim, Yong-Jae; Militzer, Burkhard; Boates, Brian; Bonev, Stanimir; Celliers, Peter M; Collins, Gilbert W; Driver, Kevin P; Fratanduono, Dayne E; Hamel, Sebastien; Jeanloz, Raymond; Rygg, J Ryan; Swift, Damian C; Eggert, Jon H; Millot, Marius.
Afiliação
  • Kim YJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Militzer B; Departments of Earth and Planetary Science and Astronomy, University of California, Berkeley, California 94720, USA.
  • Boates B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bonev S; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Celliers PM; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Collins GW; Departments of Mechanical Engineering, Physics and Astronomy, and the Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Driver KP; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Fratanduono DE; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hamel S; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Jeanloz R; Departments of Earth and Planetary Science and Astronomy, University of California, Berkeley, California 94720, USA.
  • Rygg JR; Departments of Mechanical Engineering, Physics and Astronomy, and the Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA.
  • Swift DC; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Eggert JH; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Millot M; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Phys Rev Lett ; 129(1): 015701, 2022 Jul 01.
Article em En | MEDLINE | ID: mdl-35841582
ABSTRACT
Triple bonding in the nitrogen molecule (N_{2}) is among the strongest chemical bonds with a dissociation enthalpy of 9.8 eV/molecule. Nitrogen is therefore an excellent test bed for theoretical and numerical methods aimed at understanding how bonding evolves under the influence of the extreme pressures and temperatures of the warm dense matter regime. Here, we report laser-driven shock experiments on fluid molecular nitrogen up to 800 GPa and 4.0 g/cm^{3}. Line-imaging velocimetry measurements and impedance matching method with a quartz reference yield shock equation of state data of initially precompressed nitrogen. Comparison with numerical simulations using path integral Monte Carlo and density functional theory molecular dynamics reveals clear signatures of chemical dissociation and the onset of L-shell ionization. Combining data along multiple shock Hugoniot curves starting from densities between 0.76 and 1.29 g/cm^{3}, our study documents how pressure and density affect these changes in chemical bonding and provides benchmarks for future theoretical developments in this regime, with applications for planetary interior modeling, high energy density science, and inertial confinement fusion research.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos