Your browser doesn't support javascript.
loading
OsAMT1;1 and OsAMT1;2 Coordinate Root Morphological and Physiological Responses to Ammonium for Efficient Nitrogen Foraging in Rice.
Wu, Xiangyu; Xie, Xiaoxiao; Yang, Shan; Yin, Qianyu; Cao, Huairong; Dong, Xiaonan; Hui, Jing; Liu, Zhi; Jia, Zhongtao; Mao, Chuanzao; Yuan, Lixing.
Afiliação
  • Wu X; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Xie X; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Yang S; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Yin Q; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Cao H; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Dong X; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Hui J; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Liu Z; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Jia Z; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
  • Mao C; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou City, Zhejiang Province 310058, China.
  • Yuan L; Key Laboratory of Plant-Soil Interactions, MOE, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
Plant Cell Physiol ; 63(9): 1309-1320, 2022 Sep 15.
Article em En | MEDLINE | ID: mdl-35861152
ABSTRACT
Optimal plant growth and development rely on morphological and physiological adaptions of the root system to forage heterogeneously distributed nitrogen (N) in soils. Rice grows mainly in the paddy soil where ammonium (NH4+) is present as the major N source. Although root NH4+ foraging behaviors are expected to be agronomically relevant, the underlying mechanism remains largely unknown. Here, we showed that NH4+ supply transiently enhanced the high-affinity NH4+ uptake and stimulated lateral root (LR) branching and elongation. These synergistic physiological and morphological responses were closely related to NH4+-induced expression of NH4+ transporters OsAMT1;1 and OsAMT1;2 in roots. The two independent double mutants (dko) defective in OsAMT1;1 and OsAMT1;2 failed to induce NH4+ uptake and stimulate LR formation, suggesting that OsAMT1s conferred the substrate-dependent root NH4+ foraging. In dko plants, NH4+ was unable to activate the expression of OsPIN2, and the OsPIN2 mutant (lra1) exhibited a strong reduction in NH4+-triggered LR branching, suggesting that the auxin pathway was likely involved in OsAMT1s-dependent LR branching. Importantly, OsAMT1s-dependent root NH4+ foraging behaviors facilitated rice growth and N acquisition under fluctuating NH4+ supply. These results revealed an essential role of OsAMT1s in synergizing root morphological and physiological processes, allowing for efficient root NH4+ foraging to optimize N capture under fluctuating N availabilities.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Proteínas de Transporte de Cátions / Compostos de Amônio Idioma: En Revista: Plant Cell Physiol Assunto da revista: BOTANICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oryza / Proteínas de Transporte de Cátions / Compostos de Amônio Idioma: En Revista: Plant Cell Physiol Assunto da revista: BOTANICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China