Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems.
Life (Basel)
; 12(7)2022 Jun 28.
Article
em En
| MEDLINE
| ID: mdl-35888061
Wastewater treatment plants (WWTPs) are important contributors to global greenhouse gas (GHG) emissions, partly due to their huge emission of nitrous oxide (N2O), which has a global warming potential of 298 CO2 equivalents. Anaerobic ammonium-oxidizing (anammox) bacteria provide a shortcut in the nitrogen removal pathway by directly transforming ammonium and nitrite to nitrogen gas (N2). Due to its energy efficiency, the anammox-driven treatment has been applied worldwide for the removal of inorganic nitrogen from ammonium-rich wastewater. Although direct evidence of the metabolic production of N2O by anammox bacteria is lacking, the microorganisms coexisting in anammox-driven WWTPs could produce a considerable amount of N2O and hence affect the sustainability of wastewater treatment. Thus, N2O emission is still one of the downsides of anammox-driven wastewater treatment, and efforts are required to understand the mechanisms of N2O emission from anammox-driven WWTPs using different nitrogen removal strategies and develop effective mitigation strategies. Here, three main N2O production processes, namely, hydroxylamine oxidation, nitrifier denitrification, and heterotrophic denitrification, and the unique N2O consumption process termed nosZ-dominated N2O degradation, occurring in anammox-driven wastewater treatment systems, are summarized and discussed. The key factors influencing N2O emission and mitigation strategies are discussed in detail, and areas in which further research is urgently required are identified.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Life (Basel)
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China