Your browser doesn't support javascript.
loading
Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses.
Kochetkov, Iu V; Bukharskii, N D; Ehret, M; Abe, Y; Law, K F F; Ospina-Bohorquez, V; Santos, J J; Fujioka, S; Schaumann, G; Zielbauer, B; Kuznetsov, A; Korneev, Ph.
Afiliação
  • Kochetkov IV; National Research Nuclear University MEPhI, Moscow, Russian Federation.
  • Bukharskii ND; National Research Nuclear University MEPhI, Moscow, Russian Federation.
  • Ehret M; Centre Lasers Intenses et Applications (CELIA), UMR 5107, Université de Bordeaux - CNRS - CEA, Talence, France.
  • Abe Y; Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany.
  • Law KFF; Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Ospina-Bohorquez V; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Santos JJ; Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Fujioka S; Universidad de Salamanca, Salamanca, Spain.
  • Schaumann G; Centre Lasers Intenses et Applications (CELIA), UMR 5107, Université de Bordeaux - CNRS - CEA, Talence, France.
  • Zielbauer B; Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
  • Kuznetsov A; Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany.
  • Korneev P; PP/PHELIX, GSI, Darmstadt, Germany.
Sci Rep ; 12(1): 13734, 2022 Aug 12.
Article em En | MEDLINE | ID: mdl-35962017
Optical generation of kilo-tesla scale magnetic fields enables prospective technologies and fundamental studies with unprecedentedly high magnetic field energy density. A question is the optimal configuration of proposed setups, where plenty of physical phenomena accompany the generation and complicate both theoretical studies and experimental realizations. Short laser drivers seem more suitable in many applications, though the process is tangled by an intrinsic transient nature. In this work, an artificial neural network is engaged for unravelling main features of the magnetic field excited with a picosecond laser pulse. The trained neural network acquires an ability to read the magnetic field values from experimental data, extremely facilitating interpretation of the experimental results. The conclusion is that the short sub-picosecond laser pulse may generate a quasi-stationary magnetic field structure living on a hundred picosecond time scale, when the induced current forms a closed circuit.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article