Your browser doesn't support javascript.
loading
A new pathway for anaerobic biotransformation of marine toxin domoic acid.
Du, Miaomiao; Jin, Yuan; Fan, Jingfeng; Zan, Shuaijun; Gu, Chen; Wang, Jing.
Afiliação
  • Du M; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China.
  • Jin Y; Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China.
  • Fan J; Marine Ecology Department, National Marine Environmental Monitoring Center, Dalian, 116023, China.
  • Zan S; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China.
  • Gu C; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China.
  • Wang J; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, 116024, People's Republic of China. jwang@dlut.edu.cn.
Environ Sci Pollut Res Int ; 30(2): 5150-5160, 2023 Jan.
Article em En | MEDLINE | ID: mdl-35974277
Domoic acid (DA) is a harmful algal toxin produced by marine diatom Pseudo-nitzschia and seriously threatens ecosystem and human health. However, the current knowledge on its biotransformation behavior in coastal anaerobic environment is lacking. This study investigated the anaerobic biotransformation of DA by a new marine consortium GH1. The results demonstrated that 90% of DA (1 mg L-1) was cometabolically biotransformed under sulfate-reducing condition. A new anaerobic biotransformation pathway involving DA hydration, dehydrogenation, and C-C bond cleavage was proposed, where the conjugated double-bond of DA was interrupted, resulting in the corresponding alcohols and ketones, subsequently cleaved hydrolytically, and yielding the lower molecular weight products. Desulfovibrio and Clostridiales were markedly enriched in the anaerobic biotransformation of DA, which might jointly contribute to the elevated bacterial consortium resistance and degradation to DA. This study could deepen understanding of behavior and fate for DA in marine environments.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diatomáceas / Ecossistema Limite: Humans Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diatomáceas / Ecossistema Limite: Humans Idioma: En Revista: Environ Sci Pollut Res Int Assunto da revista: SAUDE AMBIENTAL / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article