Your browser doesn't support javascript.
loading
Associations of cortical iron accumulation with cognition and cerebral atrophy in Alzheimer's disease.
Yang, Aocai; Du, Lei; Gao, Wenwen; Liu, Bing; Chen, Yue; Wang, Yige; Liu, Xiuxiu; Lv, Kuan; Zhang, Wenwei; Xia, Hui; Wu, Kai; Ma, Guolin.
Afiliação
  • Yang A; Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
  • Du L; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Gao W; Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
  • Liu B; Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
  • Chen Y; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
  • Wang Y; Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
  • Liu X; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Lv K; Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
  • Zhang W; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
  • Xia H; Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
  • Wu K; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
  • Ma G; Department of Radiology, China-Japan Friendship Hospital, Beijing, China.
Quant Imaging Med Surg ; 12(9): 4570-4586, 2022 Sep.
Article em En | MEDLINE | ID: mdl-36060596
Background: In Alzheimer's disease (AD), cerebral iron accumulation colocalizes with the pathological proteins amyloid-ß (Aß) and tau. Furthermore, tau-induced cortical thinning is associated with cognitive decline. In this study, quantitative susceptibility mapping (QSM) was used to investigate the whole-brain distribution pattern of cortical iron deposition and its relationships with cognition and cortical thickness in AD. Methods: This cross-sectional study prospectively recruited 30 participants with AD and 26 age- and sex-matched healthy controls (HCs). All participants underwent QSM and T1-weighted examinations on a 3.0T MRI scanner. Global cognition was assessed using the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Whole-brain cross-sectional QSM analysis and whole-brain QSM regression analyses against the MMSE and MoCA scores were performed. Surface-based morphometry analysis was also performed. Subsequently, in regions with significant atrophy, magnetic susceptibility was compared between the AD and HC groups, and the association between magnetic susceptibility and cortical thickness was assessed. Results: Whole-brain QSM cross-sectional analysis in the AD group demonstrated widespread increased susceptibility across the cortical ribbon, asymmetrically covering the left hemisphere cerebral cortex, caudate nucleus, putamen, and partial cerebellar cortex. Whole-brain QSM regression analyses in the AD group showed that increased susceptibility covaried with lower MMSE and MoCA scores, and was predominantly located in the right parietal cortex and lateral occipital cortex. In the AD group, cortical thickness was reduced in the left superior temporal gyrus, right frontal pole, fusiform gyus, and pars opercularis, and there were increases in susceptibility in the right frontal pole (AD: mean ± SD 0.034±0.007 ppm, 95% CI: 0.032-0.037 ppm; HC: 0.030±0.005 ppm, 95% CI: 0.028-0.032 ppm; P=0.016) and pars opercularis (AD: 0.020±0.003 ppm, 95% CI: 0.018-0.021 ppm; HC: 0.017±0.002 ppm, 95% CI: 0.017-0.018 ppm; P=0.002). Susceptibility was negatively correlated with cortical thickness in the right pars opercularis in the entire cohort (r=-0.521, P<0.001) and AD group (r=-0.510, P=0.005). Conclusions: Widespread cortical iron, as measured by QSM, accumulated in AD and iron deposition was associated with poor cognitive performance. Increased iron content was also associated with brain atrophy. Our study suggests QSM may be a useful imaging biomarker for monitoring the neurodegenerative progression of AD.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Observational_studies / Risk_factors_studies Idioma: En Revista: Quant Imaging Med Surg Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Observational_studies / Risk_factors_studies Idioma: En Revista: Quant Imaging Med Surg Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China