Your browser doesn't support javascript.
loading
Modified Electrostatic Complementary Score Function and Its Application Boundary Exploration in Drug Design.
Zhao, Liming; Pu, Mengchen; Wang, Huting; Ma, Xiangyu; Zhang, Yingsheng J.
Afiliação
  • Zhao L; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Pu M; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Wang H; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Ma X; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
  • Zhang YJ; Beijing StoneWise Technology Co Ltd., Haidian Street #15, Haidian District, Beijing 100080, China.
J Chem Inf Model ; 62(18): 4420-4426, 2022 09 26.
Article em En | MEDLINE | ID: mdl-36069259
ABSTRACT
In recent years, machine learning (ML) models have been found to quickly predict various molecular properties with accuracy comparable to high-level quantum chemistry methods. One such example is the calculation of electrostatic potential (ESP). Different ESP prediction ML models were proposed to generate surface molecular charge distribution. Electrostatic complementarity (EC) can apply ESP data to quantify the complementarity between a ligand and its binding pocket, leading to the potential to increase the efficiency of drug design. However, there is not much research discussing EC score functions and their applicability domain. We propose a new EC score function modified from the one originally developed by Bauer and Mackey, and confirm its effectiveness against the available Pearson's R correlation coefficient. Additionally, the applicability domain of the EC score and two indices used to define the EC score application scope will be discussed.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desenho de Fármacos / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Idioma: En Revista: J Chem Inf Model Assunto da revista: INFORMATICA MEDICA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China