[Spatial Distribution of Quinolone Antibiotics and Its Correlation Relationship with Microbial Community in Soil of Shijiazhuang City].
Huan Jing Ke Xue
; 43(9): 4684-4696, 2022 Sep 08.
Article
em Zh
| MEDLINE
| ID: mdl-36096609
Microbial communities are an important component of soil ecosystems. Long-term low content antibiotic pollution will affect the structure and function of microbial communities in soil. Therefore, Shijiazhuang City was selected as the study area, in which twelve sample points were set up in September 2020. These sample sites were divided into four areas (S1, S2, S3, and S4) according to spatial orientation. Ultra-high performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was applied to determine the content of typical antibiotic-quinolones (QNs) in the soil. 16S rRNA high-throughput sequencing technology was used to study the microbial community structure and diversity in the soil. The results showed that:â the total detected contents of QNs in the four areas were S3 (313.5 µg·kg-1)>S4 (65.54 µg·kg-1)>S1 (46.19 µg·kg-1)>S2 (12.63 µg·kg-1). The content of norfloxacin (NOR) was the highest (91.99 µg·kg-1), whereas the content of oxolinic acid (OXO) was the lowest (0.4486 µg·kg-1). â¡ For grain size, the proportion of powder (2-50 µm) was the highest (66.7%-93.2%), whereas the proportion of clay (less than 2 µm) was the lowest (2.50%-9.10%). For physical and chemical parameters, total phosphorus (TP) and ammonia nitrogen (NH4+-N) showed non-significant spatial differences, whereas nitrate nitrogen (NO3--N), nitrite nitrogen (NO2--N), and grain size showed significant spatial differences. ⢠For microbial community composition, there were six dominant bacteria phyla and five dominant bacteria genera, among which Actinobacteriota (18.3%-34.6%) and Proteobacteria (13.6%-34.1%) were the dominant bacteria phyla, and Arthrobacter (3.24%-8.61%) and Nitrososphaeraceae (2.93%-9.46%) were the dominant bacteria genera. The diversity results showed the highest value in the S2 area (6.48) and the lowest value in the S3 area (5.89). ⣠QNs and soil physical and chemical parameters significantly changed the structural composition of microbial communities, and OXO, NO3--N, and soil particle size affected the diversity of microbial communities. FLU, NH4+-N, NO2--N, and soil particle size affected the function of the microbial community. Therefore, it is necessary to further strengthen the risk control of antibiotics in the soil of Shijiazhuang City.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Quinolonas
/
Microbiota
Idioma:
Zh
Revista:
Huan Jing Ke Xue
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China