Your browser doesn't support javascript.
loading
COF-DNA Bicolor Nanoprobes for Imaging Tumor-Associated mRNAs in Living Cells.
Gao, Peng; Yin, Jiaqi; Wang, Mengzhen; Wei, Ruyue; Pan, Wei; Li, Na; Tang, Bo.
Afiliação
  • Gao P; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Yin J; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Wang M; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Wei R; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Pan W; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Li N; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
  • Tang B; College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal Un
Anal Chem ; 94(38): 13293-13299, 2022 09 27.
Article em En | MEDLINE | ID: mdl-36110053
ABSTRACT
Developing probes for the simultaneous detection of multiple tumor-associated mRNAs is beneficial for the precise diagnosis and early therapy of cancer. In this work, we prepared two COF-DNA bicolor probes at room temperature and freezing conditions and evaluated their performances in simultaneous imaging of intracellular tumor-associated mRNAs. By loading dye-labeled survivin- and TK1-mRNA recognition sequences on porphyrin COF NPs, nucleic acid-specific "off-on" nanoprobes were obtained. The nanoprobe prepared by the freezing method exhibits higher ssDNA loading density and better fluorescence quenching efficiency. Moreover, its signal-to-noise ratio is significantly higher than that prepared at room temperature, and the target recognition effect was unaffected. Significantly, the freezing-method-prepared nanoprobe has higher signal intensities in target-overexpressed cells compared to the room-temperature-prepared probe, while their signals in cells with low target expression are similar. Thus, the freezing-method-prepared nanoprobe is a promising tool for improved cancer diagnostic imaging. This work can offer new insights into the exploration of high-performance COF-based nanoprobes for multiple biomarker detection.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Porfirinas / Neoplasias Tipo de estudo: Diagnostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Porfirinas / Neoplasias Tipo de estudo: Diagnostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Anal Chem Ano de publicação: 2022 Tipo de documento: Article