Your browser doesn't support javascript.
loading
Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions.
Xu, Gui-Qing; Chen, Tu-Qiang; Liu, Shen-Si; Ma, Jie; Li, Yan.
Afiliação
  • Xu GQ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China. Ele
  • Chen TQ; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Liu SS; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Ma J; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China.
  • Li Y; State Key Lab of Subtropical Siviculture, Zhejiang A&F University, 666Wusu Street, Lin-An, Hangzhou 311300, China.
Sci Total Environ ; 854: 158802, 2023 Jan 01.
Article em En | MEDLINE | ID: mdl-36115397
ABSTRACT
In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Árvores / Secas Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Árvores / Secas Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article