Your browser doesn't support javascript.
loading
Generating polyketide diversity in Dictyostelium: a Steely hybrid polyketide synthase produces alternate products at different developmental stages.
Saito, Tamao; Iijima, Tomoyuki; Koyama, Kohei; Shinagawa, Tomonori; Yamanaka, Ayaka; Araki, Tsuyoshi; Suzuki, Noriyuki; Usuki, Toyonobu; Kay, Robert R.
Afiliação
  • Saito T; Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Iijima T; Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Koyama K; Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Shinagawa T; Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Yamanaka A; Graduate School of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Araki T; Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Suzuki N; Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Usuki T; Faculty of Science and Technology, Sophia University, Tokyo 102-8554, Japan.
  • Kay RR; MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
Proc Biol Sci ; 289(1983): 20221176, 2022 09 28.
Article em En | MEDLINE | ID: mdl-36126683
ABSTRACT
The soil is a rich ecosystem where many ecological interactions are mediated by small molecules, and in which amoebae are low-level predators and also prey. The social amoeba Dictyostelium discoideum has a high genomic potential for producing polyketides to mediate its ecological interactions, including the unique 'Steely' enzymes, consisting of a fusion between a fatty acid synthase and a chalcone synthase. We report here that D. discoideum further increases its polyketide potential by using the StlB Steely enzyme, and a downstream chlorinating enzyme, to make both a chlorinated signal molecule, DIF-1, during its multi-cellular development, and a set of abundant polyketides in terminally differentiated stalk cells. We identify one of these as a chlorinated dibenzofuran with potent anti-bacterial activity. To do this, StlB switches expression from prespore to stalk cells in late development and is cleaved to release the chalcone synthase domain. Expression of this domain alone in StlB null cells allows synthesis of the stalk-associated, chlorinated polyketides. Thus, by altered expression and processing of StlB, cells make first a signal molecule, and then abundant secondary metabolites, which we speculate help to protect the mature spores from bacterial infection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dictyostelium / Policetídeos Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Biol Sci Assunto da revista: BIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dictyostelium / Policetídeos Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Biol Sci Assunto da revista: BIOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Japão