Your browser doesn't support javascript.
loading
Acetylome reprograming participates in the establishment of fruit metabolism during polyploidization in citrus.
Zhang, Miao; Tan, Feng-Quan; Fan, Yan-Jie; Wang, Ting-Ting; Song, Xin; Xie, Kai-Dong; Wu, Xiao-Meng; Zhang, Fan; Deng, Xiu-Xin; Grosser, Jude W; Guo, Wen-Wu.
Afiliação
  • Zhang M; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Tan FQ; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Fan YJ; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Wang TT; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Song X; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Xie KD; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Wu XM; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Zhang F; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Deng XX; Hubei Hongshan Laboratory, Wuhan 430070, China.
  • Grosser JW; Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
  • Guo WW; Hubei Hongshan Laboratory, Wuhan 430070, China.
Plant Physiol ; 190(4): 2519-2538, 2022 11 28.
Article em En | MEDLINE | ID: mdl-36135821
ABSTRACT
Polyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism. To test whether changes in metabolism in citrus fruit is associated with the reprogramming of lysine acetylation (Kac) in non-histone proteins during allotetraploidization, we performed a global acetylome analysis of fruits from a synthetic allotetraploid citrus and its diploid parents. A total of 4,175 Kac sites were identified on 1,640 proteins involved in a wide range of fruit traits. In the allotetraploid, parental dominance (i.e. resemblance to one of the two parents) in specific fruit traits, such as fruit acidity and flavonol metabolism, was highly associated with parental Kac level dominance in pertinent enzymes. This association is due to Kac-mediated regulation of enzyme activity. Moreover, protein Kac probably contributes to the discordance between the transcriptomic and proteomic variations during allotetraploidization. The acetylome reprogramming can be partially explained by the expression pattern of several lysine deacetylases (KDACs). Overexpression of silent information regulator 2 (CgSRT2) and histone deacetylase 8 (CgHDA8) diverted metabolic flux from primary metabolism to secondary metabolism and partially restored a metabolic status to the allotetraploid, which expressed attenuated levels of CgSRT2 and CgHDA8. Additionally, KDAC inhibitor treatment greatly altered metabolism in citrus fruit. Collectively, these findings reveal the important role of acetylome reprogramming in trait evolution during polyploidization.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Citrus / Proteômica Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Citrus / Proteômica Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China