Your browser doesn't support javascript.
loading
Transient Receptor Potential Channels: Important Players in Ocular Pain and Dry Eye Disease.
Fakih, Darine; Migeon, Tiffany; Moreau, Nathan; Baudouin, Christophe; Réaux-Le Goazigo, Annabelle; Mélik Parsadaniantz, Stéphane.
Afiliação
  • Fakih D; Laboratoires Théa, 12 Rue Louis Blériot, CEDEX 2, 63017 Clermont-Ferrand, France.
  • Migeon T; CNRS, INSERM, Institut de la Vision, Sorbonne Université, 17 Rue Moreau, 75012 Paris, France.
  • Moreau N; CNRS, INSERM, Institut de la Vision, Sorbonne Université, 17 Rue Moreau, 75012 Paris, France.
  • Baudouin C; CNRS, INSERM, Institut de la Vision, Sorbonne Université, 17 Rue Moreau, 75012 Paris, France.
  • Réaux-Le Goazigo A; CNRS, INSERM, Institut de la Vision, Sorbonne Université, 17 Rue Moreau, 75012 Paris, France.
  • Mélik Parsadaniantz S; CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 Rue de Charenton, 75012 Paris, France.
Pharmaceutics ; 14(9)2022 Sep 02.
Article em En | MEDLINE | ID: mdl-36145607
ABSTRACT
Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED's main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Pharmaceutics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Risk_factors_studies Idioma: En Revista: Pharmaceutics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: França