Your browser doesn't support javascript.
loading
Development of an Add-On Device Using 3D Printing for the Enhancement of Drug Administration Efficiency of Dry Powder Inhalers (Accuhaler).
Suwanpitak, Kittipat; Lim, Lee-Yong; Singh, Inderbir; Sriamornsak, Pornsak; Thepsonthi, Thanongsak; Huanbutta, Kampanart; Sangnim, Tanikan.
Afiliação
  • Suwanpitak K; Faculty of Pharmaceutical Sciences, Burapha University, 169, Seansook, Muang, Chonburi 20131, Thailand.
  • Lim LY; Division of Pharmacy, School of Allied Health, University of Western Australia, Perth, WA 6009, Australia.
  • Singh I; Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India.
  • Sriamornsak P; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
  • Thepsonthi T; Faculty of Engineering, Burapha University, 169, Seansook, Muang, Chonburi 20131, Thailand.
  • Huanbutta K; School of Pharmacy, Eastern Asia University, Thanyaburi, Pathumthani 12110, Thailand.
  • Sangnim T; Faculty of Pharmaceutical Sciences, Burapha University, 169, Seansook, Muang, Chonburi 20131, Thailand.
Pharmaceutics ; 14(9)2022 Sep 12.
Article em En | MEDLINE | ID: mdl-36145670
ABSTRACT
The goal of this study was to develop an add-on device for dry powder inhalers (Accuhaler) via 3D printing to improve drug administration efficiency in patients with limited inspiratory capacity, including young children, the elderly, and those with chronic obstructive pulmonary disease. With salmeterol xinafoate and fluticasone propionate as model active pharmaceutical ingredients (API), the emitted API doses were used to assess the effectiveness of the add-on device. The APIs were quantified by an HPLC assay validated for specificity, range, linearity, accuracy, and precision. The motor power of the add-on device could be regulated to moderate fan speed and the air flow in the assembled device. When 50-100% of the fan motor power of the add-on device was used, the emitted dose from the attached dry powder inhaler (DPI) was increased. A computational fluid dynamics application was used to simulate the air and particle flow in the DPI with the add-on device in order to elucidate the operating mechanism. The use of the add-on device combined with a sufficient inhalation flow rate resulted in a larger pressure drop and airflow velocity at the blister pocket. As these characteristics are associated with powder fluidization, entrainment, and particle re-suspension, this innovative add-on device might be utilized to enhance the DPI emitted drug dose for patients with low inspiratory rates and to facilitate the provision of adequate drug doses to achieve the treatment outcomes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Pharmaceutics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Tailândia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Pharmaceutics Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Tailândia