Your browser doesn't support javascript.
loading
Neural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images.
La Salvia, Marco; Torti, Emanuele; Leon, Raquel; Fabelo, Himar; Ortega, Samuel; Balea-Fernandez, Francisco; Martinez-Vega, Beatriz; Castaño, Irene; Almeida, Pablo; Carretero, Gregorio; Hernandez, Javier A; Callico, Gustavo M; Leporati, Francesco.
Afiliação
  • La Salvia M; Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy.
  • Torti E; Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy.
  • Leon R; Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain.
  • Fabelo H; Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain.
  • Ortega S; Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain.
  • Balea-Fernandez F; Norwegian Institute of Food, Fisheries and Aquaculture Research (Nofima), 6122 Tromsø, Norway.
  • Martinez-Vega B; Department of Psychology, Sociology and Social Work, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain.
  • Castaño I; Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain.
  • Almeida P; Department of Dermatology, Hospital Universitario de Gran Canaria Doctor Negrín, Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canaria, Spain.
  • Carretero G; Department of Dermatology, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Maritima del Sur, s/n, 35016 Las Palmas de Gran Canaria, Spain.
  • Hernandez JA; Department of Dermatology, Hospital Universitario de Gran Canaria Doctor Negrín, Barranco de la Ballena, s/n, 35010 Las Palmas de Gran Canaria, Spain.
  • Callico GM; Department of Dermatology, Complejo Hospitalario Universitario Insular-Materno Infantil, Avenida Maritima del Sur, s/n, 35016 Las Palmas de Gran Canaria, Spain.
  • Leporati F; Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas de Gran Canaria, Spain.
Sensors (Basel) ; 22(19)2022 Sep 21.
Article em En | MEDLINE | ID: mdl-36236240
Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Cutâneas / Melanoma Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Itália