Your browser doesn't support javascript.
loading
Ultrafast two-dimensional imaging for surface defects measurement of mirrors based on a virtually imaged phased-array.
Opt Express ; 30(21): 37235-37244, 2022 Oct 10.
Article em En | MEDLINE | ID: mdl-36258315
ABSTRACT
Single-shot measurement of surface defects of mirrors is vital for monitoring the operating states of high power lasers systems. While conventional methods suffer from low speed and small dynamic range. Here, we demonstrate a method for high speed two-dimensional (2D) surface amplitude-type defects measurement based on ultrafast single-pixel imaging assisted by a virtually imaged phased-array. Together with an optical grating, 2D wavelength to space mapping is achieved based on Fraunhofer far field diffraction, and the uniform broad spectrum of a home-made dissipative soliton is uniformly dispersed into the targeted mirror with one-to-one wavelength-to-space mapping. The surface amplitude-type defects are modulated into the intensity variation of the reflected spectrum. Then, we build a dispersive Fourier transform module for wavelength to time mapping, through which modulated spectral information is time stretched into the temporal domain, and recorded by a high speed photodetector together with a real time oscilloscope. Finally, to diminish the distortions induced by nonlinear dispersion during the wavelength-time mapping, we utilize the interpolation, and reconstruct the 2D surface with a frame rate of 7.6 MHz. A two-dimensional image with widths of 1.5 × 2 mm can be obtained within 10 ns, with a y direction spatial resolution of 180 µm and a x direction spatial resolution of 140 µm. This ultrafast 2D surface defects measurement scheme is promising for real-time monitoring of surface defects mirrors with large aperture, which are widely utilized in various high power laser systems.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2022 Tipo de documento: Article