Your browser doesn't support javascript.
loading
Particle Property Characterization and Data Curation for Effective Powder Property Modeling in the Pharmaceutical Industry.
Wadams, Robert C; Akseli, Ilgaz; Albrecht, Jacob; Ferreira, Ana P; Gamble, John F; Leane, Michael; Thomas, Stephen; Schuman, Yue; Taylor, Lauren; Tobyn, Mike.
Afiliação
  • Wadams RC; Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey, 08901, USA. robert.wadams@bms.com.
  • Akseli I; Drug Product Development, Bristol Myers Squibb, Summit West, New Jersey, USA.
  • Albrecht J; Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey, 08901, USA.
  • Ferreira AP; Sage Bionetworks, Princeton, New Jersey, USA.
  • Gamble JF; Drug Product Development, Bristol Myers Squibb, Reeds Lane, Moreton, UK.
  • Leane M; Drug Product Development, Bristol Myers Squibb, Reeds Lane, Moreton, UK.
  • Thomas S; Drug Product Development, Bristol Myers Squibb, Reeds Lane, Moreton, UK.
  • Schuman Y; Drug Product Development, Bristol Myers Squibb, Summit West, New Jersey, USA.
  • Taylor L; Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey, 08901, USA.
  • Tobyn M; Drug Product Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey, 08901, USA.
AAPS PharmSciTech ; 23(8): 286, 2022 Oct 19.
Article em En | MEDLINE | ID: mdl-36261755
Computational modeling, machine learning, and statistical data analysis are increasingly utilized to mitigate chemistry, manufacturing, and control failures related to particle properties in solid dosage form manufacture. Advances in particle characterization techniques and computational approaches provide unprecedented opportunities to explore relationships between particle morphology and drug product manufacturability. Achieving this, however, has numerous challenges such as producing and appropriately curating robust particle size and shape data. Addressing these challenges requires a harmonized strategy from material sampling practices, characterization technique selection, and data curation to provide data sets which are informative on material properties. Herein, common sources of error in particle characterization and data compression are reviewed, and a proposal for providing robust particle morphology (size and shape) data to support modeling efforts, approaches for data curation, and the outlook for modeling particle properties are discussed.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Indústria Farmacêutica / Curadoria de Dados Idioma: En Revista: AAPS PharmSciTech Assunto da revista: FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Indústria Farmacêutica / Curadoria de Dados Idioma: En Revista: AAPS PharmSciTech Assunto da revista: FARMACOLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos