Ultrathin Hydrogel Films toward Breathable Skin-Integrated Electronics.
Adv Mater
; 35(1): e2206793, 2023 Jan.
Article
em En
| MEDLINE
| ID: mdl-36267034
On-skin electronics that offer revolutionary capabilities in personalized diagnosis, therapeutics, and human-machine interfaces require seamless integration between the skin and electronics. A common question remains whether an ideal interface can be introduced to directly bridge thin-film electronics with the soft skin, allowing the skin to breathe freely and the skin-integrated electronics to function stably. Here, an ever-thinnest hydrogel is reported that is compliant to the glyphic lines and subtle minutiae on the skin without forming air gaps, produced by a facile cold-lamination method. The hydrogels exhibit high water-vapor permeability, allowing nearly unimpeded transepidermal water loss and free breathing of the skin underneath. Hydrogel-interfaced flexible (opto)electronics without causing skin irritation or accelerated device performance deterioration are demonstrated. The long-term applicability is recorded for over one week. With combined features of extreme mechanical compliance, high permeability, and biocompatibility, the ultrathin hydrogel interface promotes the general applicability of skin-integrated electronics.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Pele
/
Eletrônica
Limite:
Humans
Idioma:
En
Revista:
Adv Mater
Assunto da revista:
BIOFISICA
/
QUIMICA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
China