Your browser doesn't support javascript.
loading
Survival analysis of localized prostate cancer with deep learning.
Dai, Xin; Park, Ji Hwan; Yoo, Shinjae; D'Imperio, Nicholas; McMahon, Benjamin H; Rentsch, Christopher T; Tate, Janet P; Justice, Amy C.
Afiliação
  • Dai X; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA. xdai@bnl.gov.
  • Park JH; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA.
  • Yoo S; School of Computer Science, The University of Oklahoma, Norman, OK, USA.
  • D'Imperio N; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA.
  • McMahon BH; Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, USA.
  • Rentsch CT; Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA.
  • Tate JP; VA Connecticut Healthcare System, West Haven, CT, USA.
  • Justice AC; Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA.
Sci Rep ; 12(1): 17821, 2022 10 24.
Article em En | MEDLINE | ID: mdl-36280773
ABSTRACT
In recent years, data-driven, deep-learning-based models have shown great promise in medical risk prediction. By utilizing the large-scale Electronic Health Record data found in the U.S. Department of Veterans Affairs, the largest integrated healthcare system in the United States, we have developed an automated, personalized risk prediction model to support the clinical decision-making process for localized prostate cancer patients. This method combines the representative power of deep learning and the analytical interpretability of parametric regression models and can implement both time-dependent and static input data. To collect a comprehensive evaluation of model performances, we calculate time-dependent C-statistics [Formula see text] over 2-, 5-, and 10-year time horizons using either a composite outcome or prostate cancer mortality as the target event. The composite outcome combines the Prostate-Specific Antigen (PSA) test, metastasis, and prostate cancer mortality. Our longitudinal model Recurrent Deep Survival Machine (RDSM) achieved [Formula see text] 0.85 (0.83), 0.80 (0.83), and 0.76 (0.81), while the cross-sectional model Deep Survival Machine (DSM) attained [Formula see text] 0.85 (0.82), 0.80 (0.82), and 0.76 (0.79) for the 2-, 5-, and 10-year composite (mortality) outcomes, respectively. In addition to estimating the survival probability, our method can quantify the uncertainty associated with the prediction. The uncertainty scores show a consistent correlation with the prediction accuracy. We find PSA and prostate cancer stage information are the most important indicators in risk prediction. Our work demonstrates the utility of the data-driven machine learning model in prostate cancer risk prediction, which can play a critical role in the clinical decision system.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Aprendizado Profundo Tipo de estudo: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans / Male País/Região como assunto: America do norte Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Aprendizado Profundo Tipo de estudo: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Limite: Humans / Male País/Região como assunto: America do norte Idioma: En Revista: Sci Rep Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos