Your browser doesn't support javascript.
loading
Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population.
Díaz-Muñoz, Cristian; Verce, Marko; De Vuyst, Luc; Weckx, Stefan.
Afiliação
  • Díaz-Muñoz C; Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
  • Verce M; Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
  • De Vuyst L; Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
  • Weckx S; Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
iScience ; 25(11): 105309, 2022 Nov 18.
Article em En | MEDLINE | ID: mdl-36304120
ABSTRACT
Various yeast strains have been proposed as candidate starter cultures for cocoa fermentation, especially strains of Saccharomyces cerevisiae. In the current study, the genome of the cocoa strain S. cerevisiae IMDO 050523 was unraveled based on a combination of long- and short-read sequencing. It consisted of 16 nuclear chromosomes and a mitochondrial chromosome, which were organized in 20 contigs, with only two small gaps. A phylogenomic analysis of this genome together with another 105 S cerevisiae genomes, among which 20 from cocoa strains showed a geographical distribution of the latter, including S. cerevisiae IMDO 050523. Its genome clustered together with that of a West African fermented food population, indicating a wider adaptation to West African food niches than cocoa. Furthermore, S. cerevisiae IMDO 050523 contained genetic signatures involved in sucrose hydrolysis, pectin degradation, osmotolerance, and conserved amino acid changes in key ester-producing enzymes that could point toward specific niche adaptations.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Bélgica

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: IScience Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Bélgica