CNNArginineMe: A CNN structure for training models for predicting arginine methylation sites based on the One-Hot encoding of peptide sequence.
Front Genet
; 13: 1036862, 2022.
Article
em En
| MEDLINE
| ID: mdl-36324513
Protein arginine methylation (PRme), as one post-translational modification, plays a critical role in numerous cellular processes and regulates critical cellular functions. Though several in silico models for predicting PRme sites have been reported, new models may be required to develop due to the significant increase of identified PRme sites. In this study, we constructed multiple machine-learning and deep-learning models. The deep-learning model CNN combined with the One-Hot coding showed the best performance, dubbed CNNArginineMe. CNNArginineMe performed best in AUC scoring metrics in comparisons with several reported predictors. Additionally, we employed CNNArginineMe to predict arginine methylation proteome and performed functional analysis. The arginine methylated proteome is significantly enriched in the amyotrophic lateral sclerosis (ALS) pathway. CNNArginineMe is freely available at https://github.com/guoyangzou/CNNArginineMe.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Front Genet
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
China