Your browser doesn't support javascript.
loading
Surface Spin Enhanced High Stable NiCo2 S4 for Energy-Saving Production of H2 from Water/Methanol Coelectrolysis at High Current Density.
Si, Fengzhan; Liu, Jianwen; Zhang, Yan; Zhao, Bin; Liang, Yue; Wu, Xuexian; Kang, Xiaomin; Yang, Xiaoqiang; Zhang, Jiujun; Fu, Xian-Zhu; Luo, Jing-Li.
Afiliação
  • Si F; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Liu J; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Zhang Y; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Zhao B; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Liang Y; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Wu X; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Kang X; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Yang X; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Zhang J; Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China.
  • Fu XZ; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
  • Luo JL; Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
Small ; 19(2): e2205257, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36344428
ABSTRACT
Nickel based materials are promising electrocatalysts to produce hydrogen from water in alkaline media. However, the stability is of great challenge, limiting its practical material functions. Herein, a new technique for electro-deposition flower-like NiCo2 S4 nanosheets on carbon-cloth (CC@NiCo2 S4 ) is proposed for energy-saving production of H2 from water/methanol coelectrolysis at high current density by constructing array architectures and regulating surface magnetism. The optimized and fine-tuned magnetism on the surface of the electrochemical in situ grown CC@NiCo2 S4 nanosheet array result in (0 1 -1) surface universally exposed, high catalytic activity for methanol electrooxidation, and long-term stability at high current density. X-ray photoelectron spectroscopy in combination of density functional theory calculations confirm the valence electron states and spin of d electrons for the surface of NiCo2 S4 , which enhance the surface stability of catalysts. This technology may be utilized to alter the surface magnetism and increase the stability of Ni-based electrocatalytic materials in general.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China