Your browser doesn't support javascript.
loading
Stretchable and conformable variable stiffness device through an electrorheological fluid.
Pan, Yiyi; Liu, Xin-Jun; Zhao, Huichan.
Afiliação
  • Pan Y; Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
  • Liu XJ; State Key Laboratory of Tribology in Advanced Equipment, Beijing 100084, China.
  • Zhao H; Beijing Key Lab of Precision/Ultra-Precision Manufacturing Equipment and Control, Beijing 100084, China. zhaohuichan@mail.tsinghua.edu.cn.
Soft Matter ; 18(48): 9163-9171, 2022 Dec 14.
Article em En | MEDLINE | ID: mdl-36377854
ABSTRACT
Stiffness variations extend creatures' functions and capabilities to deal with complex environments. In this study, we proposed an electrorheological fluid-based variable stiffness device, named VSERF, made up of soft materials. Our device is soft, thin, and stretchable so that it can conform to surfaces with complex morphologies. The stiffness of the VSERF device can be continuously, independently, and reversibly adjusted by applying an electric field. It achieves 14.8-times compressive stiffness variation and 3.5-times tangential stiffness variation when the electric field intensity increases from 0 V mm-1 to 750 V mm-1. The VSERF device is able to return to its initial shape after removing the external force and electric field, allowing it to be reused. The effects of stretching and bending on the device's capability of stiffness variations are investigated experimentally and the results show that the stiffness variation is unaffected by a stretching strain of up to 20% and a bending curvature of up to 50 m-1. Finally, we show that the VSERF device is capable of conforming to complex surfaces (coral stones, pencils, and 3D printed cubes) in its inactive state, hanging on them with a weight of up to 80 g (19 times of its own weight) in its active state, and detaching when the electric field is removed. The device's short-term and long-term stabilities are experimentally investigated as well. The demonstration of the VSERF's attaching and detaching ability shows that the stiffness-variation device's adaptability to complex environments can be improved.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Soft Matter Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China