Your browser doesn't support javascript.
loading
Electrospun fiber-mediated delivery of neurotrophin-3 mRNA for neural tissue engineering applications.
Puhl, Devan L; Funnell, Jessica L; Fink, Tanner D; Swaminathan, Anuj; Oudega, Martin; Zha, R Helen; Gilbert, Ryan J.
Afiliação
  • Puhl DL; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Funnell JL; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Fink TD; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Swaminathan A; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Oudega M; Shirley Ryan AbilityLab, Chicago, IL, USA; Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA; Department of Neuroscience, Northwestern University, Chicago, IL, USA; Edward Hines Jr VA Hospital, Hines, IL, USA.
  • Zha RH; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
  • Gilbert RJ; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA. Electronic address: gilber2@rpi.edu.
Acta Biomater ; 155: 370-385, 2023 01 01.
Article em En | MEDLINE | ID: mdl-36423820
ABSTRACT
Aligned electrospun fibers provide topographical cues and local therapeutic delivery to facilitate robust peripheral nerve regeneration. mRNA delivery enables transient expression of desired proteins that promote axonal regeneration. However, no prior work delivers mRNA from electrospun fibers for peripheral nerve regeneration applications. Here, we developed the first aligned electrospun fibers to deliver pseudouridine-modified (Ψ) neurotrophin-3 (NT-3) mRNA (ΨNT-3mRNA) to primary Schwann cells and assessed NT-3 secretion and bioactivity. We first electrospun aligned poly(L-lactic acid) (PLLA) fibers and coated them with the anionic substrates dextran sulfate sodium salt (DSS) or poly(3,4-dihydroxy-L-phenylalanine) (pDOPA). Cationic lipoplexes containing ΨNT-3mRNA complexed to JetMESSENGER® were then immobilized to the fibers, resulting in detectable ΨNT-3mRNA release for 28 days from all fiber groups investigated (PLLA+mRNA, 0.5DSS4h+mRNA, and 2pDOPA4h+mRNA). The 2pDOPA4h+mRNA group significantly increased Schwann cell secretion of NT-3 for 21 days compared to control PLLA fibers (p < 0.001-0.05) and, on average, increased Schwann cell secretion of NT-3 by ≥ 2-fold compared to bolus mRNA delivery from the 1µgBolus+mRNA and 3µgBolus+mRNA groups. The 2pDOPA4h+mRNA fibers supported Schwann cell secretion of NT-3 at levels that significantly increased dorsal root ganglia (DRG) neurite extension by 44% (p < 0.0001) and neurite area by 64% (p < 0.001) compared to control PLLA fibers. The data show that the 2pDOPA4h+mRNA fibers enhance the ability of Schwann cells to promote neurite growth from DRG, demonstrating this platform's potential capability to improve peripheral nerve regeneration. STATEMENT OF

SIGNIFICANCE:

Aligned electrospun fibers enhance axonal regeneration by providing structural support and guidance cues, but further therapeutic stimulation is necessary to improve functional outcomes. mRNA delivery enables the transient expression of therapeutic proteins, yet achieving local, sustained delivery remains challenging. Previous work shows that genetic material delivery from electrospun fibers improves regeneration; however, mRNA delivery has not been explored. Here, we examine mRNA delivery from aligned electrospun fibers to enhance neurite outgrowth. We show that immobilization of NT-3mRNA/JetMESSENGER® lipoplexes to aligned electrospun fibers functionalized with pDOPA enables local, sustained NT-3mRNA delivery to Schwann cells, increasing Schwann cell secretion of NT-3 and enhancing DRG neurite outgrowth. This study displays the potential benefits of electrospun fiber-mediated mRNA delivery platforms for neural tissue engineering.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Engenharia Tecidual / Alicerces Teciduais Tipo de estudo: Guideline Idioma: En Revista: Acta Biomater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Engenharia Tecidual / Alicerces Teciduais Tipo de estudo: Guideline Idioma: En Revista: Acta Biomater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos