Your browser doesn't support javascript.
loading
Electrocatalytic Reduction of CO2 Coupled with Organic Conversion to Selectively Synthesize High-Value Chemicals.
Zhong, Wanfu; Huang, Wenhao; Ruan, Sunhong; Zhang, Qinghong; Wang, Ye; Xie, Shunji.
Afiliação
  • Zhong W; State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005
  • Huang W; State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005
  • Ruan S; State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005
  • Zhang Q; State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005
  • Wang Y; State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005
  • Xie S; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, Fujian, P. R. China.
Chemistry ; 29(20): e202203228, 2023 Apr 06.
Article em En | MEDLINE | ID: mdl-36454216
ABSTRACT
The electrochemical process of coupling electrocatalytic CO2 reduction and organic conversion reaction can effectively reduce the reaction overpotential and obtain value-added chemicals. Moreover, because of the diversity of substrates and the designability of coupling forms, more and more attention has been paid to this field. This review systematically summarizes the research progress of coupling electrolysis in recent years, (1) co-electrolysis of CO2 and organics at the cathode to obtain specific products with high selectivity, (2) replacing traditional anodic oxygen evolution reaction (OER) with other valuable oxidation reactions to improve energy utilization efficiency and economic benefits of CO2 conversion, (3) in an electrolytic cell without membrane, the cathode and anode jointly transform CO2 and organics to redox products. We hope that the examples and insights on coupling electrolysis introduced in this review can inspire researchers to further explore and innovate in this direction.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2023 Tipo de documento: Article