Your browser doesn't support javascript.
loading
Repurposing of drugs for combined treatment of COVID-19 cytokine storm using machine learning.
Gantla, Maanaskumar R; Tsigelny, Igor F; Kouznetsova, Valentina L.
Afiliação
  • Gantla MR; MAP Program, UC San Diego, Calif, USA.
  • Tsigelny IF; San Diego Supercomputer Center, UC San Diego, Calif, USA.
  • Kouznetsova VL; BiAna, La Jolla, Calif, USA.
Med Drug Discov ; 17: 100148, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36466363
Severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) induced cytokine storm is the major cause of COVID-19 related deaths. Patients have been treated with drugs that work by inhibiting a specific protein partly responsible for the cytokines production. This approach provided very limited success, since there are multiple proteins involved in the complex cell signaling disease mechanisms. We targeted five proteins: Angiotensin II receptor type 1 (AT1R), A disintegrin and metalloprotease 17 (ADAM17), Nuclear Factor­Kappa B (NF­κB), Janus kinase 1 (JAK1) and Signal Transducer and Activator of Transcription 3 (STAT3), which are involved in the SARS­CoV­2 induced cytokine storm pathway. We developed machine-learning (ML) models for these five proteins, using known active inhibitors. After developing the model for each of these proteins, FDA-approved drugs were screened to find novel therapeutics for COVID­19. We identified twenty drugs that are active for four proteins with predicted scores greater than 0.8 and eight drugs active for all five proteins with predicted scores over 0.85. Mitomycin C is the most active drug across all five proteins with an average prediction score of 0.886. For further validation of these results, we used the PyRx software to conduct protein-ligand docking experiments and calculated the binding affinity. The docking results support findings by the ML model. This research study predicted that several drugs can target multiple proteins simultaneously in cytokine storm-related pathway. These may be useful drugs to treat patients because these therapies can fight cytokine storm caused by the virus at multiple points of inhibition, leading to synergistically effective treatments.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Med Drug Discov Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Med Drug Discov Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos