Your browser doesn't support javascript.
loading
An Efficient Algorithm for Infrared Earth Sensor with a Large Field of View.
Wang, Bendong; Wang, Hao; Jin, Zhonghe.
Afiliação
  • Wang B; Micro-Satellite Research Center, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China.
  • Wang H; Micro-Satellite Research Center, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China.
  • Jin Z; Micro-Satellite Research Center, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China.
Sensors (Basel) ; 22(23)2022 Dec 02.
Article em En | MEDLINE | ID: mdl-36502110
ABSTRACT
Infrared Earth sensors with large-field-of-view (FOV) cameras are widely used in low-Earth-orbit satellites. To improve the accuracy and speed of Earth sensors, an algorithm based on modified random sample consensus (RANSAC) and weighted total least squares (WTLS) is proposed. Firstly, the modified RANSAC with a pre-verification step was used to remove the noisy points efficiently. Then, the Earth's oblateness was taken into consideration and the Earth's horizon was projected onto a unit sphere as a three-dimensional (3D) curve. Finally, the TLS and WTLS were used to fit the projection of the Earth horizon. With the help of TLS and WTLS, the accuracy of the Earth sensor was greatly improved. Simulated images and on-orbit infrared images obtained via the satellite Tianping-2B were used to assess the performance of the algorithm. The experimental results demonstrate that the method outperforms RANSAC, M-estimator sample consensus (MLESAC), and Hough transformation in terms of speed. The accuracy of the algorithm for nadir estimation is approximately 0.04° (root-mean-square error) when Earth is fully visible and 0.16° when the off-nadir angle is 120°, which is a significant improvement upon other nadir estimation algorithms.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Planeta Terra Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Planeta Terra Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China