Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values.
Phys Rev Lett
; 129(24): 240501, 2022 Dec 09.
Article
em En
| MEDLINE
| ID: mdl-36563264
Many quantum algorithms involve the evaluation of expectation values. Optimal strategies for estimating a single expectation value are known, requiring a number of state preparations that scales with the target error ϵ as O(1/ϵ). In this Letter, we address the task of estimating the expectation values of M different observables, each to within additive error ϵ, with the same 1/ϵ dependence. We describe an approach that leverages Gilyén et al.'s quantum gradient estimation algorithm to achieve O(sqrt[M]/ϵ) scaling up to logarithmic factors, regardless of the commutation properties of the M observables. We prove that this scaling is worst-case optimal in the high-precision regime if the state preparation is treated as a black box, even when the operators are mutually commuting. We highlight the flexibility of our approach by presenting several generalizations, including a strategy for accelerating the estimation of a collection of dynamic correlation functions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos