Your browser doesn't support javascript.
loading
Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values.
Huggins, William J; Wan, Kianna; McClean, Jarrod; O'Brien, Thomas E; Wiebe, Nathan; Babbush, Ryan.
Afiliação
  • Huggins WJ; Google Quantum AI, Mountain View, 94043 California, USA.
  • Wan K; Google Quantum AI, Mountain View, 94043 California, USA.
  • McClean J; Stanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA.
  • O'Brien TE; Google Quantum AI, Mountain View, 94043 California, USA.
  • Wiebe N; Google Quantum AI, Mountain View, 94043 California, USA.
  • Babbush R; University of Toronto, Toronto, Ontario ON M5S, Canada.
Phys Rev Lett ; 129(24): 240501, 2022 Dec 09.
Article em En | MEDLINE | ID: mdl-36563264
Many quantum algorithms involve the evaluation of expectation values. Optimal strategies for estimating a single expectation value are known, requiring a number of state preparations that scales with the target error ϵ as O(1/ϵ). In this Letter, we address the task of estimating the expectation values of M different observables, each to within additive error ϵ, with the same 1/ϵ dependence. We describe an approach that leverages Gilyén et al.'s quantum gradient estimation algorithm to achieve O(sqrt[M]/ϵ) scaling up to logarithmic factors, regardless of the commutation properties of the M observables. We prove that this scaling is worst-case optimal in the high-precision regime if the state preparation is treated as a black box, even when the operators are mutually commuting. We highlight the flexibility of our approach by presenting several generalizations, including a strategy for accelerating the estimation of a collection of dynamic correlation functions.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Phys Rev Lett Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos