Your browser doesn't support javascript.
loading
Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks.
Lakrisenko, Polina; Stapor, Paul; Grein, Stephan; Paszkowski, Lukasz; Pathirana, Dilan; Fröhlich, Fabian; Lines, Glenn Terje; Weindl, Daniel; Hasenauer, Jan.
Afiliação
  • Lakrisenko P; Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
  • Stapor P; Center for Mathematics, Technische Universität München, Garching, Germany.
  • Grein S; Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.
  • Paszkowski L; Center for Mathematics, Technische Universität München, Garching, Germany.
  • Pathirana D; University of Bonn, Life and Medical Sciences Institute, Bonn, Germany.
  • Fröhlich F; Simula Research Laboratory, Oslo, Norway.
  • Lines GT; University of Bonn, Life and Medical Sciences Institute, Bonn, Germany.
  • Weindl D; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America.
  • Hasenauer J; Simula Research Laboratory, Oslo, Norway.
PLoS Comput Biol ; 19(1): e1010783, 2023 01.
Article em En | MEDLINE | ID: mdl-36595539
ABSTRACT
Dynamical models in the form of systems of ordinary differential equations have become a standard tool in systems biology. Many parameters of such models are usually unknown and have to be inferred from experimental data. Gradient-based optimization has proven to be effective for parameter estimation. However, computing gradients becomes increasingly costly for larger models, which are required for capturing the complex interactions of multiple biochemical pathways. Adjoint sensitivity analysis has been pivotal for working with such large models, but methods tailored for steady-state data are currently not available. We propose a new adjoint method for computing gradients, which is applicable if the experimental data include steady-state measurements. The method is based on a reformulation of the backward integration problem to a system of linear algebraic equations. The evaluation of the proposed method using real-world problems shows a speedup of total simulation time by a factor of up to 4.4. Our results demonstrate that the proposed approach can achieve a substantial improvement in computation time, in particular for large-scale models, where computational efficiency is critical.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia de Sistemas / Modelos Biológicos Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biologia de Sistemas / Modelos Biológicos Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Alemanha