Your browser doesn't support javascript.
loading
Interphase Engineering for Stabilizing Ni-Rich Cathode in Lithium-Ion Batteries by a Nucleophilic Reaction-Based Additive.
Zheng, Wei-Chen; Huang, Zheng; Shi, Chen-Guang; Deng, Yaping; Wen, Zi-Hao; Li, Zhen; Chen, Hui; Chen, Zhongwei; Huang, Ling; Sun, Shi-Gang.
Afiliação
  • Zheng WC; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Huang Z; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Shi CG; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Deng Y; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada.
  • Wen ZH; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Li Z; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Chen H; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Chen Z; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, Waterloo, Ontario, N2 L 3G1, Canada.
  • Huang L; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
  • Sun SG; College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen, 361005, P. R. China.
ChemSusChem ; 16(7): e202202252, 2023 Apr 06.
Article em En | MEDLINE | ID: mdl-36627241
ABSTRACT
Ni-rich cathode materials are considered promising candidates for next-generation lithium-ion batteries because of their high energy density and low cost. However, interphase failure at the surface of Ni-rich cathodes negatively impacts cycling performance, making it challenging to meet the requirements of long-term applications. In this study, a strategy is developed to improve interphase properties through introduction of a nucleophilic reaction-based additive, using an appropriate amount of the inducer lithium isopropoxide (LIP) in the commercial electrolyte to achieve long-term cycling stability of Li||LiNi0.83 Co0.11 Mn0.06 O2 (NCM83) cells. This strategy enables Li||NCM83 cells to maintain a capacity of 148.7 mAh g-1 with a retention of 83.3 % even after 500 cycles. This outstanding cycling stability is attributed to a robust cathode-electrolyte interphase (CEI) constructed on NCM83 surface LIP-induce ring-opening polymerization of ethylene carbonate (EC). As a result, the organic-inorganic components of the CEI effectively constrain gas evolution and the corresponding phase transformation behavior. Furthermore, the CEI also suppresses microcrack formation and eventually sustains the Ni valence and coordination environment at high voltage.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2023 Tipo de documento: Article